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Abstract. We present analytic sets @f solitary waves as solutions @f coupled nonlinear
Schibdinger and of N coupled ‘quadratic’ equations, for which thg? nonlinear coupling
parameters of the coupled equations can take up wide ranges of values. The coupled equations
may not be integrable in the usual sense, but have analytic solitary waves and are solvable for the
given initial conditions prescribed by the analytic solutions. Potential applications of these solitary
waves are discussed.

For its many applications, especially in nonlinear optics [1], the problem of two coupled
nonlinear Schidinger (CNLS) equations has been studied for many years. Following the
work of Manakov [2], coupled solitary waves that consist of bright—bright, bright-dark, and
dark—dark pairs that can propagate in the normal or anomalous group-velocity dispersion
(GVD) region have been found [3—6]. The simplest bright and dark solitary waves have the
forms secl§ and tantt respectively, wheré = «a(r — z/v), @ is some constant andz andv

denote time, displacement and velocity. Solitary wave-pairs that consist of product types of the
forms tantio1&) sech 2 (a2€) and sech(a1£), where 1< s < 2 have also been given [7-9].
Solitary waves each of which is a superposition of bright and dark solitary waves were given
by the author [10], and many periodic solitary waves which are expressed in terms of Jacobian
elliptic functions or their products were given by several authors [10-13]. Specific integrable
parametric choices for two CNLS equations have been studied using Eeamlealysis [14].

In this paper, we conside¥ (>1) coupled nonlinear Schdinger-like equations and
presentN complementary solitary waves, i.e. solitary waveslifferentwaveform, given by
Py_j(tanhg), m = 0,1,..., N — 1, whereP}" (x) is the associated Legendre function, as a
solution of theseV CNLS equations. We express the& nonlinear coupling parameters in
terms of 2V +1 variable parameters for which these coupled equations have these solitary waves
as a solution and are solvable for the initial conditions prescribed by the analytic solutions.
We should note that the coupled equations are not, or may not be, integrable in the usual sense
where integrable means for all possible initial conditions. One of the objectives of this paper
is to bring our attention from integrable to solvable cases for certain given initial conditions
because analytic solutions for the latter can be applied to many useful cases where the nonlinear
coupling parameters can assume wide ranges of values while the integrable cases offer only
very few choices of coupling parameters. For this considerable gain, we must use the more
restricted initial conditions prescribed by these analytic solutions; butthese conditions can often
be experimentally simulated without too much problem. Foe 2, our solutions give the
well known dark and bright solitary waves. We also pregémbmplementary solitary waves
Pzz((]’f,__ll))(tanhg), k=1 ...,N,as asolution oV coupled quadratic (CQ) equations, which
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are an analogue df CNLS equations with quadratic instead of cubic nonlinear couplings.
Interesting implications and applications of these higher-order coupled solitary waves, which
cannot be solitary individually, are discussed.

Consider a set ofv coupled equations for the slowly varying complex envelopes or
component,,(z,1),m = 1,2, ..., N of the electric fields propagating along thaxis that
satisfy the following coupled nonlinear Séidinger-like equations

N N
i¢mz+¢mtt+’cm¢m+(men|¢n|2)¢m+ (Zan¢3>¢; =0 m = 1,...,N, (1)
n=1 n=1

wherep, ¢ andk are parameters characteristic of the medium, and where the subsdapt
different components ap is to be distinguished from the subscriptsiandz which denote
derivatives with respect toandr, respectively. A closely related set of coupled equations is

N N
Wiz + Y + (menwz)wm + (qunwfez'“ﬂﬂ:,e‘z'“mz =0 m=1...N
n=1 n=1
2

which can be transformed into (1) with the substitutigns= ¢,, exp(—ix,z). We first search
for the stationary-wave solution of the form

¢m (Z, t) = Xm (t) eXF(iQZ) (3)

whereQ is a real constant, ang, (¢) are real functions af only. Equations (1) reduce to the
following, which we call the associated dynamical coupled nonlineardsager equations:

N
X — ApXp + <Zb,,mx3>xm =0 m=1...,N (4)
n=1

wherex denotes d/dz, and where
Ay =Q — Ky and bmn = Pmn t Gmn- (5)

Since equations (1) and (2) are invariant under a Galilean transformation, the travelling waves
can be constructed from (3) by replacipg(z, 1) by

Om(z, t — Z/U) eXp{i[t - Z/(ZU)]/(ZU)} (6)

wherev is the velocity of the waves.
An analogous set of coupled equations which we ¥alQ equations is

N N
i¢mz +¢mtt +Km¢m + (Z pmn|¢n|>¢m + (Zan¢n>¢; =0 m=12...,N.

n=1 n=1

)
The corresponding associated dynamical CQ equations are
N
K — AmXm + <menx,l)xm =0 m=12...,N (8)
n=1

where we have used the same substitutions (3). To eliminate the permutation symmetry, we
arrange equations (4) and (8) such that< A, < -+ - < Ay.

Let P)"(x) denote the associated Legendre function of degraed ordem:. We make
the ansatz that

x; = /C; P} 3[tanhar)] j=12...,N (9)
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Table 1. P} (tanh&) for n = 1-4.

n m  P"(tanhg)

1 0 tank
1 seche

2 0 seche-2

tanh¢ seche
secl ¢

N -

tanht (sectf £ —
seche(sectf & — 2
tanhg sectf &
secli &

w N P O

seche — Eseclf s + 35
tanhg sect‘é(sech"s -4
secK £(sectf & — &
tanht secht &

sech &

AW N PF O

whereC; is real and positive, for equations (4); and
x; = C; P33 [tanh(an)] j=12....N (10)

whereC; is real, for equations (8). The sets of solitary waws(tanh¢) for n = 1-4,
normalized such that the coefficient of the highest power of séglone, are given in table 1.
To express our results in a compact form, we shall define tkirev/ matrices in the following.
We first definez)"” as follows.

For equation (4)q{" is the coefficient of2(~2 in [ P} 1 (x)]2 when it is expanded as
P,{, l(Jc)]2 Za(N) 20— (11)

and for equation (Snfj ) is the coefficient of2i~D in PZZ((I{, v )(x) when itis expressed as
22(% ) (x) = Za(iv) 20— (12)

Our first N x N matrix isT' = [¢;;] whose matrix elements; = aij)Cj, whereC; is the
coefficient in (9) for equation (4), and is the coefficient in (10) for equation (8). Our second
matrixisB = [b;;], whereb;; are the nonlinear coupling parameters given in equation (4) or (8).
Our third matrixisD = [d;;], whered;; = A;+[(N—1)N —(j —1?a?], dp; = —(N—1)Na?,
dsj = daj = -+~ = dy; = Oforequation (4), andy; = A;+[(2N —2)(2N —1)—4(j —1)?]o?],
i = —(2N — 2)(2N — 1)a?, d3; = d4j = - -- = dy,; = 0 for equation (8).

Substitutions of the ansatz (9) or (10) into equations (4) or (8) leatl4a@lgebraic

equations which can be expressed conveniently in terms of the three matrgeandD as

B’ =D
or
BT =1 D (13)
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whereB” denotes the transposed matrix&f Provided thal'~* exists, equation (13) gives
the set of parametets; in equations (4) or (8) in terms of th&; given in those equations,
and in terms of the generally arbitrary amplitudesin (9) or (10), i.e. equation (13) gives
the N2 nonlinear coupling parametets; in terms of 2V + 1 variable parameters;, C;,
Jj=1...,N,ande, and for thes#;;, equations (4) or (8) are solvable.

If, on the other hand, we are given the set\&fvalues ofb;; and ask whether2 A ; and
C; (C; must bex>0 for equation (4)) and can be found that yield solutions (9) and (10), the
answer would be no generally unless the given valuég; @re such that ¥ + 1 values ofA ;,
C; anda can be found that satisfy thé? equations.

For the special case of; = ¢, foralli, j = 1,..., N, wheree = +1 or—1, we can give

the answer in a compact form. We write equation (13), in this case, as

aC =d (14)
where the N x N matrix a = [4)’], the N-dimensional column vectoC =
col(Cq, C», ..., Cy), and theN-dimensional column vectar = col(dqi1, doy, ..., dy1). The
consistency requirement beconés— 1 equations o, ..., Ay which must be related to
Aq by

Aj = A+ (j — D2a? j=2...,N (15a)
for equations (4); and

Aj = AL+ 4(j — 1% j=2...,N (15b)

for equations (8).
Thus, ifa~! exists, and if thed in equations (4) or (8) are given by equation £1L5r
(150), then (9) and (10) are solutions of (4) and (8) respectively @itlgiven by

C=ald (16)

For equations (4), there is a further restriction that@hegiven by equation (16) must all be
positive.

Equations (9)—(16) complete the description of our solutions for equations (4) and (8),
and with the use of transformation (6), odrcomplementary solitary-wave solutions f§r
CNLS and CQ equations (1) and (7). It will be noted thatdéheomplementary solitary waves
for CNLS equations consist of symmetric (ab§ut 0) as well as antisymmetric waves, and
those for CQ equations consist of only symmetric waves.

We shall illustrate our results first with the important exampl@&/o& 2 for equation (1).
Using equation (13), we find that equations (4) are solvable (with solutions given by
equation (9)) if theb are given interms ofA1, A, C1, Co, anda by

b1y = A1Cy* b2 = (Ay +20%)C;*
ba= (A2 —a®)Cit bp=(Az+a?)C,t
As the parameterd, C andw can be considered as variables, equations (17) give a wide range
of values that the nonlinear coupling parametecan have for which the two CNLS equations
are solvable, and have a coupled solitary-wave solution given by equation (9).
A simpler result follows if we choosg; = A, = —C», «? = C, — Cq, for which we find
b1 = —CzCl_l b1 = 1—2C1C2_1 by = 1—2C2C1_1 by = —C1C2_1.
(18)
The two coupled NLS equations characterized by (18) can be shown to be mathematically
equivalent to the coupled equations that arise from the Maxwell-68otger equations that

17)
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describe the resonant interactions of two electromagnetic waves with a three-level system that
was studied by Hioe and Grobe [15].
Forthe case ob;; = ¢ =+1or—1,foralli, j =1,..., N, solution (9) of equations (4)
gives, forN = 2,
x1 = /C1tanhar xp = /C, sechut
C1=¢A; Ca =245 — Ay) a? = Ay — Ay (19)
Ay > Ay > 0(e = +1) Ay > A1 <0 =-1)
and forN = 3,
x1=+/Ci(secar — 2) x2 = /Ca tanhat sechus x3 = /Czseclf ar
C1=9£A1/4 C2=38(2A2—A1) C3=38(8A2—7A1)/4
OlZZAQ—Al A3=4A2—3A1
Ay > A1 > 0(e=+1) Ar > A1>8A2/7<0(8= -1).
Next we illustrate our results with the examplef= 2 for equation (7). Equations (8)
are solvable with solutions given by equation (10) if tieeare given in terms of thd;, A,,
Cq, Co, ando by
b= —3A:011 bip = 3(A1+4a®)Cyt
bo1 = —3(A; — 4®)C;H bap = 34,051
Equations (21) give a wide range of values that the nonlinear coupling parawisteas have

for which the two CQ equations are solvable, and have a coupled solitary-wave solution given
by equation (10).

(20)

(21)

For the case ob;; = e foralli, j = 1,..., N, solution (10) of equation (8) gives, for

N =2,
x1 = Ci(sec ot — 3) x3 = Cyseclf at 22)
C1=—3c41/2 Cy =3c4,/2 a? = (A — Ay)/4

and forN = 3,

xy = Cy(secfar — Ssecfar + L) xp = Cosecf ot (sechar — 9)

x3 = Czsech ar

C1=35:¢41/8 C, = —35¢4,/6 Cs = 35¢A3/24 (23)

a? = (Ay— Ay)/4 Az =44, — 344
Ay > A1 >0 (fore = +1) Ay > A1 <0 (fore = —1).

Let us consider further the CNLS equations for the cagg;of ¢ foralli, j =1,..., N.
The case = +1, N = 1 can be identified with the standard NLS equation that gives the bright
solitary wave, and the case= —1, N = 1 can be seento be equivalentto the standard equation
that gives the dark solitary wave. Fr> 1, our solutions give sets of complementary solitary
waves, i.e. solitary waves differentwaveform. Let us refer to th¥y complementary waves
for the N coupled equations as waves of ordér Other solutions can be constructed in two
following ways.

(I) Foragiven set ofV coupled equations (4), depending@g: +1 or—1, various solutions
can be constructed which consist of two or more waves of#meform of orderN or
lower, i.e. theN solitary waves are no longer entirely complementary but may consist of
two or more identical waveforms. It should be noted that (a) not every combination is
a possible solution, e.g. the bright—bright solitary wave-pair is not a solution of CNLS
equations forN = 2, ¢ = —1 and thus the pair cannot propagate in the normal GVD
region; and (b) when two or more of thé waves are of the same form, it necessarily
requires the corresponding values of s in equations (4) to be equal.
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(I) Besides waves of ordéY for N coupled equations, another seido€omplementary-wave
solutions can be obtained as follows. Eoe +1, we may se€; = 0 in the set of solution
for N +1 coupled equations, i.e. we use the set of waves of avdet excluding the first
one, and find that they are a possible solutioVofoupled equations fap,, ..., dy+1
(which we may relabep, ..., ¢y). Fore = —1, we may seCy+; = 0, and find the
remainingV complementary waves of ordar+ 1 to be a solution oV coupled equations
for ¢y, ..., . However, a wave of orde¥ + 1 cannot be a solution of coupled equations
involving N — 1 or less coupled field envelopes or components. In particular, any wave
or order>2 is not by itself a solitary wave of an NLS equation.

A potentially interesting implication of (Il) above can be illustrated with the following
specific examples for CNLS equations. Let us denote the three complementary waves of order
3 (see table 1 and equation (20)) by = seclf ¢ — 2, g, = tanh sech, g; = sec&. It
can be checked that the pair of solitary waygs g3) can propagate in the anomalous GVD
region(e = +1) but not in the normal GVD regioe = —1), and that the pair of solitary
waves(gi, g2) can propagate in the normal GVD region but not in the anomalous GVD region.
However, by having either pair of waves coupled to a third complementary wave, the three
coupled wavesgi, g2, g3) can propagate in the normal or the anomalous GVD region, by
having appropriate values of in equations (4). We have a similar situation when we go
from N = 1to N = 2: the bright solitary wave is a solution f&f = 1, ¢ = +1 and not
¢ = —1, while the dark solitary wave is a solution fr= 1, = —1 and not = +1, but the
coupled bright and dark solitary wave-pair can propagate in either the normal or anomalous
GVD region for both waves, i.e. the bright—dark solitary wave-pair is a solutioN fer 2 for
¢ = +1 or—1. Similar examples can be shown for the CQ equations. We have thus extended
the very successful idea of using two optical waves instead of one for better control of wave
propagation [15-17] to that of usirg + 1 optical waves instead &¥.

In summary, we have presented new solitary wave-sets thadvgieenplementary solitary
waves forN CNLS and CQ equations (1) and (7). TNé nonlinear coupling parametebg
are expressed in terms ofV2+ 1 variable parameterg,, ..., Ay, C1,...,Cy, anda by
equation (13) for which the coupled equations (4) and (8) hslveoupled solitary-wave
solutions (9) and (10) respectively, and for which the coupled nonlinear equations (1) and (7)
are thus solvable. The novel feature of these results is that not only new solitary waveforms
have been found, but also the introduction of (i) new generations of coupled solitary waves
which cannot be solitary individually, and the idea that (ii) increasing the number of coupled
waves may indeed extend the region of validity for propagation of solitary waves, and that
(i) there can be a wide and continuous range of nonlinear coupling parameters for which
coupled nonlinear equations have analytic solitary waves. A recent experimental observation
of multihump solitons [18] may encourage experimental creation and observation of the new
solitary waves given here.
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