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Abstract. We present analytic sets ofN solitary waves as solutions ofN coupled nonlinear
Schr̈odinger and ofN coupled ‘quadratic’ equations, for which theN2 nonlinear coupling
parameters of the coupled equations can take up wide ranges of values. The coupled equations
may not be integrable in the usual sense, but have analytic solitary waves and are solvable for the
given initial conditions prescribed by the analytic solutions. Potential applications of these solitary
waves are discussed.

For its many applications, especially in nonlinear optics [1], the problem of two coupled
nonlinear Schr̈odinger (CNLS) equations has been studied for many years. Following the
work of Manakov [2], coupled solitary waves that consist of bright–bright, bright–dark, and
dark–dark pairs that can propagate in the normal or anomalous group-velocity dispersion
(GVD) region have been found [3–6]. The simplest bright and dark solitary waves have the
forms sechξ and tanhξ respectively, whereξ = α(t − z/v), α is some constant andt , z andv
denote time, displacement and velocity. Solitary wave-pairs that consist of product types of the
forms tanh(α1ξ) sechs−1(α2ξ) and sech2(α1ξ), where 16 s 6 2 have also been given [7–9].
Solitary waves each of which is a superposition of bright and dark solitary waves were given
by the author [10], and many periodic solitary waves which are expressed in terms of Jacobian
elliptic functions or their products were given by several authors [10–13]. Specific integrable
parametric choices for two CNLS equations have been studied using Painlevé analysis [14].

In this paper, we considerN (>1) coupled nonlinear Schrödinger-like equations and
presentN complementary solitary waves, i.e. solitary waves ofdifferentwaveform, given by
PmN−1(tanhξ), m = 0, 1, . . . , N − 1, wherePmn (x) is the associated Legendre function, as a
solution of theseN CNLS equations. We express theN2 nonlinear coupling parameters in
terms of 2N+1 variable parameters for which these coupled equations have these solitary waves
as a solution and are solvable for the initial conditions prescribed by the analytic solutions.
We should note that the coupled equations are not, or may not be, integrable in the usual sense
where integrable means for all possible initial conditions. One of the objectives of this paper
is to bring our attention from integrable to solvable cases for certain given initial conditions
because analytic solutions for the latter can be applied to many useful cases where the nonlinear
coupling parameters can assume wide ranges of values while the integrable cases offer only
very few choices of coupling parameters. For this considerable gain, we must use the more
restricted initial conditions prescribed by these analytic solutions; but these conditions can often
be experimentally simulated without too much problem. ForN = 2, our solutions give the
well known dark and bright solitary waves. We also presentN complementary solitary waves
P

2(k−1)
2(N−1)(tanhξ), k = 1, . . . , N , as a solution ofN coupled quadratic (CQ) equations, which

0305-4470/99/071217+07$19.50 © 1999 IOP Publishing Ltd 1217



1218 F T Hioe

are an analogue ofN CNLS equations with quadratic instead of cubic nonlinear couplings.
Interesting implications and applications of these higher-order coupled solitary waves, which
cannot be solitary individually, are discussed.

Consider a set ofN coupled equations for the slowly varying complex envelopes or
componentsφm(z, t),m = 1, 2, . . . , N of the electric fields propagating along thez-axis that
satisfy the following coupled nonlinear Schrödinger-like equations

iφmz + φmtt + κmφm +

( N∑
n=1

pmn|φn|2
)
φm +

( N∑
n=1

qmnφ
2
n

)
φ∗m = 0 m = 1, . . . , N, (1)

wherep, q andκ are parameters characteristic of the medium, and where the subscriptm for
different components ofφ is to be distinguished from the subscripts inz andt which denote
derivatives with respect toz andt , respectively. A closely related set of coupled equations is

iψmz +ψmtt +

( N∑
n=1

pmn|ψn|2
)
ψm +

( N∑
n=1

qmnψ
2
ne2iκnz

)
ψ∗me−2iκmz = 0 m = 1, . . . , N

(2)

which can be transformed into (1) with the substitutionsψm = φm exp(−iκmz). We first search
for the stationary-wave solution of the form

φm(z, t) = xm(t) exp(i�z) (3)

where� is a real constant, andxm(t) are real functions oft only. Equations (1) reduce to the
following, which we call the associated dynamical coupled nonlinear Schrödinger equations:

ẍm − Amxm +

( N∑
n=1

bmnx
2
n

)
xm = 0 m = 1, . . . , N (4)

whereẋ denotes dx/dt , and where

Am = �− κm′ and bmn = pmn + qmn. (5)

Since equations (1) and (2) are invariant under a Galilean transformation, the travelling waves
can be constructed from (3) by replacingφm(z, t) by

φm(z, t − z/v) exp{i[ t − z/(2v)]/(2v)} (6)

wherev is the velocity of the waves.
An analogous set of coupled equations which we callN CQ equations is

iφmz + φmtt + κmφm +

( N∑
n=1

pmn|φn|
)
φm +

( N∑
n=1

qmnφn

)
φ∗m = 0 m = 1, 2, . . . , N.

(7)

The corresponding associated dynamical CQ equations are

ẍm − Amxm +

( N∑
n=1

bmnxn

)
xm = 0 m = 1, 2, . . . , N (8)

where we have used the same substitutions (3). To eliminate the permutation symmetry, we
arrange equations (4) and (8) such thatA1 6 A2 6 · · · 6 AN .

Let Pmn (x) denote the associated Legendre function of degreen and orderm. We make
the ansatz that

xj =
√
CjP

j−1
N−1[tanh(αt)] j = 1, 2, . . . , N (9)
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Table 1. Pmn (tanhξ) for n = 1–4.

n m Pmn (tanhξ)

1 0 tanhξ
1 sechξ

2 0 sech2 ξ − 2
3

1 tanhξ sechξ
2 sech2 ξ

3 0 tanhξ(sech2 ξ − 2
5)

1 sechξ(sech2 ξ − 4
5)

2 tanhξ sech2 ξ
3 sech3 ξ

4 0 sech4 ξ − 8
7 sech2 ξ + 8

35

1 tanhξ sechξ(sech2 ξ − 4
7)

2 sech2 ξ(sech2 ξ − 6
7)

3 tanhξ sech3 ξ
4 sech4 ξ

whereCj is real and positive, for equations (4); and

xj = CjP 2(j−1)
2(N−1)[tanh(αt)] j = 1, 2, . . . , N (10)

whereCj is real, for equations (8). The sets of solitary wavesPmn (tanhξ) for n = 1–4,
normalized such that the coefficient of the highest power of sechξ is one, are given in table 1.
To express our results in a compact form, we shall define threeN×N matrices in the following.
We first definea(N)ij as follows.

For equation (4),a(N)ij is the coefficient ofx2(i−1) in [P j−1
N−1(x)]

2 when it is expanded as

[P j−1
N−1(x)]

2 =
N∑
i=1

a
(N)
ij x2(i−1) (11)

and for equation (8),a(N)ij is the coefficient ofx2(i−1) in P 2(j−1)
2(N−1)(x) when it is expressed as

P
2(j−1)
2(N−1)(x) =

N∑
i=1

a
(N)
ij x2(i−1). (12)

Our firstN × N matrix isΓ = [cij ] whose matrix elementscij = a
(N)
ij Cj , whereCj is the

coefficient in (9) for equation (4), and is the coefficient in (10) for equation (8). Our second
matrix isB = [bij ], wherebij are the nonlinear coupling parameters given in equation (4) or (8).
Our third matrix isD = [dij ], whered1j = Aj+[(N−1)N−(j−1)2]α2], d2j = −(N−1)Nα2,
d3j = d4j = · · · = dNj = 0 for equation (4), andd1j = Aj+[(2N−2)(2N−1)−4(j−1)2]α2],
d2j = −(2N − 2)(2N − 1)α2, d3j = d4j = · · · = dNj = 0 for equation (8).

Substitutions of the ansatz (9) or (10) into equations (4) or (8) lead toN2 algebraic
equations which can be expressed conveniently in terms of the three matricesΓ, B, andD as

ΓBT = D

or

BT = Γ−1D (13)
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whereBT denotes the transposed matrix ofB. Provided thatΓ−1 exists, equation (13) gives
the set of parametersbij in equations (4) or (8) in terms of theAj given in those equations,
and in terms of the generally arbitrary amplitudesCj in (9) or (10), i.e. equation (13) gives
theN2 nonlinear coupling parametersbij in terms of 2N + 1 variable parametersAj , Cj ,
j = 1, . . . , N , andα, and for thesebij , equations (4) or (8) are solvable.

If, on the other hand, we are given the set ofN2 values ofbij and ask whether 2NAj and
Cj (Cj must be>0 for equation (4)) andα can be found that yield solutions (9) and (10), the
answer would be no generally unless the given values ofbij are such that 2N + 1 values ofAj ,
Cj andα can be found that satisfy theN2 equations.

For the special case ofbij = ε, for all i, j = 1, . . . , N , whereε = +1 or−1, we can give
the answer in a compact form. We write equation (13), in this case, as

a EC = Ed (14)

where theN × N matrix a = [a(N)ij ], the N -dimensional column vectorEC =
col(C1, C2, . . . , CN), and theN -dimensional column vectorEd = col(d11, d21, . . . , dN1). The
consistency requirement becomesN − 1 equations onA2, . . . , AN which must be related to
A1 by

Aj = A1 + (j − 1)2α2 j = 2, . . . , N (15a)

for equations (4); and

Aj = A1 + 4(j − 1)2α2 j = 2, . . . , N (15b)

for equations (8).
Thus, if a−1 exists, and if theA in equations (4) or (8) are given by equation (15a) or

(15b), then (9) and (10) are solutions of (4) and (8) respectively withCj given by

EC = a−1 Ed. (16)

For equations (4), there is a further restriction that theCj given by equation (16) must all be
positive.

Equations (9)–(16) complete the description of our solutions for equations (4) and (8),
and with the use of transformation (6), ourN complementary solitary-wave solutions forN
CNLS and CQ equations (1) and (7). It will be noted that theN complementary solitary waves
for CNLS equations consist of symmetric (aboutξ = 0) as well as antisymmetric waves, and
those for CQ equations consist of only symmetric waves.

We shall illustrate our results first with the important example ofN = 2 for equation (1).
Using equation (13), we find that equations (4) are solvable (with solutions given by
equation (9)) if theb are given in terms ofA1, A2, C1, C2, andα by

b11 = A1C
−1
1 b12 = (A1 + 2α2)C−1

2

b21 = (A2 − α2)C−1
1 b22 = (A2 + α2)C−1

2 .
(17)

As the parametersA,C andα can be considered as variables, equations (17) give a wide range
of values that the nonlinear coupling parametersb can have for which the two CNLS equations
are solvable, and have a coupled solitary-wave solution given by equation (9).

A simpler result follows if we chooseA1 = A2 = −C2, α2 = C2−C1, for which we find

b11 = −C2C
−1
1 b12 = 1− 2C1C

−1
2 b21 = 1− 2C2C

−1
1 b22 = −C1C

−1
2 .

(18)

The two coupled NLS equations characterized by (18) can be shown to be mathematically
equivalent to the coupled equations that arise from the Maxwell–Schrödinger equations that
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describe the resonant interactions of two electromagnetic waves with a three-level system that
was studied by Hioe and Grobe [15].

For the case ofbij = ε = +1 or−1, for all i, j = 1, . . . , N , solution (9) of equations (4)
gives, forN = 2,

x1 =
√
C1 tanhαt x2 =

√
C2 sechαt

C1 = εA1 C2 = ε(2A2 − A1) α2 = A2 − A1

A2 > A1 > 0(ε = +1) A2 > A1 < 0(ε = −1)

(19)

and forN = 3,

x1 =
√
C1(sech2 αt − 2

3) x2 =
√
C2 tanhαt sechαt x3 =

√
C3 sech2 αt

C1 = 9εA1/4 C2 = 3ε(2A2 − A1) C3 = 3ε(8A2 − 7A1)/4
α2 = A2 − A1 A3 = 4A2 − 3A1

A2 > A1 > 0(ε = +1) A2 > A1 > 8A2/7< 0(ε = −1).

(20)

Next we illustrate our results with the example ofN = 2 for equation (7). Equations (8)
are solvable with solutions given by equation (10) if theb’s are given in terms of theA1, A2,
C1, C2, andα by

b11 = − 3
2A1C

−1
1 b12 = 3

2(A1 + 4α2)C−1
2

b21 = − 3
2(A2 − 4α2)C−1

1 b22 = 3
2A2C

−1
2 .

(21)

Equations (21) give a wide range of values that the nonlinear coupling parametersb’s can have
for which the two CQ equations are solvable, and have a coupled solitary-wave solution given
by equation (10).

For the case ofbij = ε for all i, j = 1, . . . , N , solution (10) of equation (8) gives, for
N = 2,

x1 = C1(sech2 αt − 2
3) x2 = C2 sech2 αt

C1 = −3εA1/2 C2 = 3εA2/2 α2 = (A2 − A1)/4
(22)

and forN = 3,

x1 = C1(sech4 αt − 8
7 sech2 αt + 8

35) x2 = C2 sech2 αt(sech2 αt − 6
7)

x3 = C3 sech4 αt

C1 = 35εA1/8 C2 = −35εA2/6 C3 = 35εA3/24
α2 = (A2 − A1)/4 A3 = 4A2 − 3A1

A2 > A1 > 0 (for ε = +1) A2 > A1 < 0 (for ε = −1).

(23)

Let us consider further the CNLS equations for the case ofbij = ε for all i, j = 1, . . . , N .
The caseε = +1,N = 1 can be identified with the standard NLS equation that gives the bright
solitary wave, and the caseε = −1,N = 1 can be seen to be equivalent to the standard equation
that gives the dark solitary wave. ForN > 1, our solutions give sets of complementary solitary
waves, i.e. solitary waves ofdifferentwaveform. Let us refer to theN complementary waves
for theN coupled equations as waves of orderN . Other solutions can be constructed in two
following ways.

(I) For a given set ofN coupled equations (4), depending onε = +1 or−1, various solutions
can be constructed which consist of two or more waves of thesameform of orderN or
lower, i.e. theN solitary waves are no longer entirely complementary but may consist of
two or more identical waveforms. It should be noted that (a) not every combination is
a possible solution, e.g. the bright–bright solitary wave-pair is not a solution of CNLS
equations forN = 2, ε = −1 and thus the pair cannot propagate in the normal GVD
region; and (b) when two or more of theN waves are of the same form, it necessarily
requires the corresponding values of theA’s in equations (4) to be equal.
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(II) Besides waves of orderN forN coupled equations, another set ofN complementary-wave
solutions can be obtained as follows. Forε = +1, we may setC1 = 0 in the set of solution
forN + 1 coupled equations, i.e. we use the set of waves of orderN + 1 excluding the first
one, and find that they are a possible solution ofN coupled equations forφ2, . . . , φN+1

(which we may relabelφ1, . . . , φN ). For ε = −1, we may setCN+1 = 0, and find the
remainingN complementary waves of orderN +1 to be a solution ofN coupled equations
for φ1, . . . , φN . However, a wave of orderN +1 cannot be a solution of coupled equations
involvingN − 1 or less coupled field envelopes or components. In particular, any wave
or order>2 is not by itself a solitary wave of an NLS equation.

A potentially interesting implication of (II) above can be illustrated with the following
specific examples for CNLS equations. Let us denote the three complementary waves of order
3 (see table 1 and equation (20)) byg1 = sech2 ξ − 2

3, g2 = tanhξ sechξ , g3 = sech2 ξ . It
can be checked that the pair of solitary waves(g2, g3) can propagate in the anomalous GVD
region(ε = +1) but not in the normal GVD region(ε = −1), and that the pair of solitary
waves(g1, g2) can propagate in the normal GVD region but not in the anomalous GVD region.
However, by having either pair of waves coupled to a third complementary wave, the three
coupled waves(g1, g2, g3) can propagate in the normal or the anomalous GVD region, by
having appropriate values ofA in equations (4). We have a similar situation when we go
from N = 1 toN = 2: the bright solitary wave is a solution forN = 1, ε = +1 and not
ε = −1, while the dark solitary wave is a solution forN = 1, ε = −1 and notε = +1, but the
coupled bright and dark solitary wave-pair can propagate in either the normal or anomalous
GVD region for both waves, i.e. the bright–dark solitary wave-pair is a solution forN = 2 for
ε = +1 or−1. Similar examples can be shown for the CQ equations. We have thus extended
the very successful idea of using two optical waves instead of one for better control of wave
propagation [15–17] to that of usingN + 1 optical waves instead ofN .

In summary, we have presented new solitary wave-sets that giveN complementary solitary
waves forN CNLS and CQ equations (1) and (7). TheN2 nonlinear coupling parametersbij
are expressed in terms of 2N + 1 variable parametersA1, . . . , AN , C1, . . . , CN , andα by
equation (13) for which the coupled equations (4) and (8) haveN coupled solitary-wave
solutions (9) and (10) respectively, and for which the coupled nonlinear equations (1) and (7)
are thus solvable. The novel feature of these results is that not only new solitary waveforms
have been found, but also the introduction of (i) new generations of coupled solitary waves
which cannot be solitary individually, and the idea that (ii) increasing the number of coupled
waves may indeed extend the region of validity for propagation of solitary waves, and that
(iii) there can be a wide and continuous range of nonlinear coupling parameters for which
coupled nonlinear equations have analytic solitary waves. A recent experimental observation
of multihump solitons [18] may encourage experimental creation and observation of the new
solitary waves given here.
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